
GO

GRAIN-ORIENTED ELECTRICAL STEEL

Electrical steels have excellent electro-magnetic properties. There are two types of electrical steel: grain-oriented and non grain-oriented electrical steel. Today, as the needs to reduce energy loss are increasing sharply, demands for high quality electrical steel are also growing. POSCO produces 1 million tons of high quality electrical steel each year.

Contents

Pohang & Gwangyang steelworks	04
Manufacturing processes & equipment	06
Specification & Main Application	80
POSCO Insulation Coating	09
PG-Core	10
PH-Core	12
PHD-Core	14
PHE-Core	16
Surface condensation in relation to humidity and temperature	17
Major international standards / Packaging & marking	18

GRAIN-ORIENTED

ELECTRICAL STEEL

Upon completion of its first-phase manufacturing facility in 1973, Pohang Steelworks, Korea's first integrated steel mill, was finally completed after 4 stages of construction at Young-il Bay in February 1981.

POSCO is capable of producing and processing a variety of carbon steels and stainless steels. The company's global competitiveness was further enhanced when we opened the world's first FINEX commercialization facility in May 2007.

Main products hot-rolled steel, plate, cold-rolled steel, wire rod, electrical steel, stainless steel, API steel, etc.

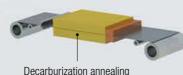
Crude steel production 16,185 million tons (as of 2013)

Gwangyang Steelworks is the world's largest integrated steel mill. It features an optimal plant layout with carbon steel processing and high-mill processing capabilities, producing automotive steel, high-strength hot rolled steel, high-quality API steel, and thick plates among other products.

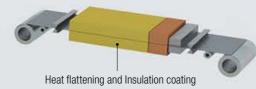
With the goal of specializing in the manufacturing of the world's best automotive steels, Gwangyang Steelworks focuses on enhancing its competitive edge.

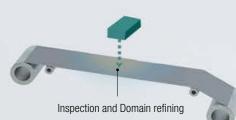
Main products hot-rolled steel, plate, cold-rolled steel, car steel, API steel, etc. Crude steel production 20,231 million tons (as of 2013)

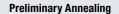
Manufacturing processes & equipment

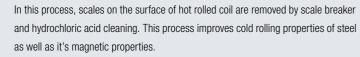

Cutting-edge facilities and state-of-art technologies enable us to meet customer's request for high quality products. Every process is controlled automatically to keep the best quality of products.

Grain-oriented electrical steel



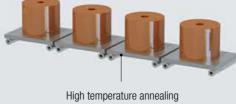






Cold Rolling

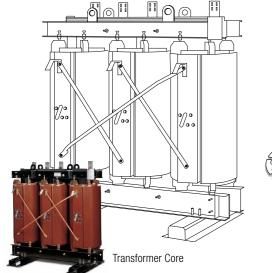
In order to obtain specific thickness and material properties, cold rolling process should be conducted. For uniform thickness and width of strip, this process is controlled automatically.

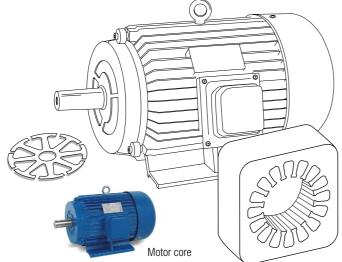


Annealing is a recrystallizing process of hardened cold rolled structures by heat treatment. There are two annealing processes for grain-oriented electrical steel: decarbonization and high temperature annealing. During decarbonization annealing, excess carbon in the steel is removed and MgO coating is applied on the surface of the steel. High temperature annealing produces secondary recrystallized structures having superior magnetic properties. Non grain-oriented electrical steel is recrystallized and insulation coating is applied during annealing process.

Insulation Coating

In this process, insulation coating is applied continuously to minimize eddy current losses, which are proportional to the sheet thickness. Grain-oriented electrical steel has two layers of coating; one is base coating with dark brown color which consists of Forsterite(Mg2SiO4), and the other is transparent insulation coating containing phosphates. For non grain-oriented electrical steel, there are various types of coating according to final usage and customer's requests.

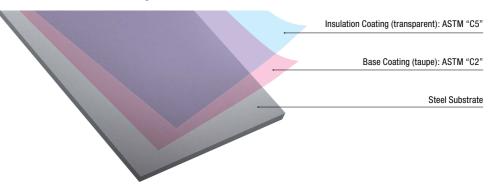

_


Specification & Main Application

■ Specification

		Grain-Oriented		
		PHD-Core	PH-Core	PG-Core
Rotating Machines	Large rotating machine			•
	Large size transformer	•	•	•
	Small & medium size transformer	•	•	•
Static Machines	Distribution transformer	•	•	•
	Reactor & magnetic amplifier	•	•	•
	Small power transformer	•	•	•
	Voltage transformer	•	•	•

■ Main Application



POSCO Insulation Coating

■ POSCO insulation coating.

■ Insulation Coating

C	oating Name	0A	Remark
ASTM Type		C-2+C-5	
	Composition	Inorganic(Phosphate Base)	-
Thickne	ss (Before SRA, µm)	2~5	
Interlaminar resistance	Before SRA	15	ASTM A 717,
$(\Omega \text{cm}^2/\text{lam.})$	After SRA	5	SRA Condition : 750 x 2hr in D X rich gas
Annealing		Good	N ₂ or DX rich gas
Heat resistance	Continuous	Not recogniozed	155℃×24hr in Air
(flaking after SRA)	Short	Not recogniozed	750℃×2hr in DX rich gas
Adhesion	Pipe bending	≤ 30 mmø	ISO 1519
(Before SRA)	Cross cut	5B(Top level)	ASTM D 3359B
ļ	Anti-Corrosion	Good	35℃, 5% NaCl, 8hrs
	Weathering	Good	65℃, 95% humidity, 72hrs
Weldability(TIG)		Excellent	Current:100-150A / Ar 99% flow:10~20L/min Speed:0.25~0.50mpm
	Punchability	Excellent	-
Lam	ination Factor(%)	Good	JIS C 2550

Note) Above values are not guaranteed. Please designate surface insulation according to usage. Regarding coating properties, please contact us.

Stress relief annealing is a process to obtain desired magnetic properties of electrical steel sheets by relieving stress generated in the process of shearing and punching. It is conducted at a proper temperature for a certain period of time.

Annealing Temperature

If the annealing temperature is too low, it is difficult to achieve adequate magnetic properties. If the temperature is too high, it may erode surface insulation, cause fusion between layers, and degrade core properties. The optimum annealing temperature to produce desirable magnetic properties is 750°C to 840°C for grain-oriented electrical steel and 750°C to 800°C for non-oriented electrical steel.

Annealing Time

Annealing time means the in-furnace time of materials at the highest temperature during the annealing process. During this time, the materials in the furnace should be heated evenly. The annealing time varies depending upon amount of materials or type of furnace. Generally, the annealing time is between 1.5 to 2.5 hours.

Heating and Cooling Speed

Abrupt heating and cooling must be avoided to prevent any deformation of the iron core. Slow cooling must be applied until it reaches $300\sim350^{\circ}C$.

Furnace Atmosphere

Furnace atmosphere should be controlled to minimize carburization or oxidization which can diminish magnetic properties. Therefore, a pure nitrogen atmosphere is ideal and the dew point of gas should be maintained as low as possible(below 0°C is adequate). The oil used in shearing and punching should be removed completely. Otherwise both sides of piled-up core will be damaged during the annealing process, deteriorating the work capacity.

PG-Core Grain-oriented electrical steel

11

POSCO Electrical Steel

PG-core has excellent magnetic properties in the rolling direction. It is widely used for large or mid/small-size transformers.

■ Standard Size

Product	Crodo	Grade Thickness, mm (in.)		Width, mm (in.)		
riouuci	Graue	Thickness, min (m.)	Available	Standard	mm (in.)	
	27PG 130	0.27 (0.0106)				
PG-Core	30PG 120	0.00 (0.0110)	0.30 (0.0118) 900~1200 (35.43~47.24)	1000 (39.37) 1200 (47.24)	508 (20)	
ru-cole	30PG 130	0.30 (0.0118)				
	35PG 145	0.25 (0.0120)				
	35PG 155	0.35 (0.0138)				

Note) For non-standard sizes, please contact us.

■ Specification

Magnetic properties and lamination factor

Grade	Density,	Core Loss, Ma	x, W/kg (W/lb)	Magnetic Flux Density, Min, T	Lamination Factor,
uraue	kg/dm³	1.7T/50Hz	1.7T/60Hz	B8	Min, %
27PG 130		1.30 (0.59)	1.67 (0.76)		95.0
30PG 120	7.05	1.20 (0.54)	1.63 (0.74)	1.80	95.5
30PG 130	7.65	1.30 (0.59)	1.73 (0.78)		
35PG 145		1.45 (0.66)	2.03 (0.92)		96.0
35PG 155		1.55 (0.70)	2.07 (0.94)		90.0

Note) Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1). B8 indicates the magnetic flux density at 800A/m. Core loss and magnetic flux density are measured after stress relief annealing and speciemen is parallel to the rolling direction. (Annealing condition: 840°C, 1hr, non-oxidation atmosphere) Uncoated specimens are used for lamination factor test.

PG-Core Grain-oriented electrical steel

■ Dimension & Shape Tolerance

	Width, mm (in.)	Thickness, mm (in.)	Thickness Tolerance, mm (in.)	Thickness deviation in Width, mm (in.)	Width Tolerance, mm (in.)	Camber (Length:2m), mm (in.)
	900 (35.43) and over	0.27 (0.0106)	±0.03 (0.0012)			1.0 (0.0394) and under
		0.30 (0.0118)		0.03 (0.0012) and under	+0.6 (0.0236)	
	und ovoi	0.35 (0.0138)				and under

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

■Typical Electrical and Magnetic Properties

Grade	Resistivity,		Core Loss, W/kg (W/lb)				
	Ω·m ×10 ⁻⁸	1.5T/50Hz	1.7T/50Hz	1.5T/60Hz	1.7T/60Hz	B8	
27PG 130		0.82 (0.37)	1.22 (0.55)	1.07 (0.49)	1.55 (0.70)	1.84	
30PG 120	48	0.83 (0.38)	1.17 (0.53)	1.09 (0.49)	1.53 (0.69)	1.85	
30PG 130	40	0.87 (0.39)	1.25 (0.57)	1.12 (0.51)	1.61 (0.73)	1.84	
35PG 145		0.98 (0.44)	1.37 (0.62)	1.29 (0.59)	1.80 (0.82)	1.84	
35PG 155		1.01 (0.46)	1.45 (0.66)	1.33 (0.60)	1.89 (0.86)	1.83	

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method. Specimen is parallel to the rolling direction and annealed for magnetic properties.

■Typical Mechanical Properties and Lamination Factor

Thickness,	Tensile Strength, N/mm ²		Yield Point, N/mm²		Elongation, %		Hardness	Lamination
mm (in.)	L	C	L	C	L	C	HV1	Factor, %
0.27 (0.0106)	344	385	322	340	11	44	182	97.5
0.30 (0.0118)	345	412	330	350	12	49	180	98.0
0.35 (0.0138)	364	423	345	357	10	40	181	98.4

 $\textbf{Note)} \ \ \textbf{1.} \ \textbf{Above values are not guaranteed.} \ \textbf{Tests are conducted in accordance with JIS Z 2241 and 2244.}$

- 2. L: Specimen is parallel to the rolling direction. / C: Specimen is transverse to the rolling direction.
- 3. Specimens with 0A coating are used for lamination factor test.

PH-Core Grain-oriented electrical steel

PH-Core

Through highly advanced texture control technologies, PH-core has superior magentic properties. This is widely used for energy efficient transformer.

■ Standard Size

Product	Grade	Thickness, mm (in.)	Width, r	nm (in.)	Inner diameter,
riouuci	uraue	Thickness, min (m.)	Available	Standard	mm (in.)
	23PH 085				
	23PH 090	0.23 (0.0091)		1000 (39.37) 1200 (47.24)	508 (20)
	23PH 095	(1111)			
PH-Core	27PH 095	0.27	900~1200 (35.43~47.24)		
	27PH 100	(0.0106)	0.30		
	30PH 100	0.30			
	30PH 105	(0.0118)			

Note) For non-standard sizes, please contact us.

■ Specification

Magnetic properties and lamination factor

Grade	Density,	Core Loss, Ma	x, W/kg (W/lb)	Magnetic Flux Density, Min, T	Lamination Factor,	
uraue	kg/dm³	1.7T/50Hz	1.7T/60Hz	B8	Min, %	
23PH 085		0.85 (0.39)	1.17 (0.53)			
23PH 090		0.90 (0.41)	1.26 (0.57)	1.88	94.5	
23PH 095		0.95 (0.43)	1.28 (0.58)			
27PH 095	7.65	0.95 (0.43)	1.30 (0.59)		95.0	
27PH 100		1.00 (0.45)	1.35 (0.61)			
30PH 100		1.00 (0.45)	1.40 (0.64)		05.5	
30PH 105		1.05 (0.48)	1.45 (0.66)		95.5	

Note) Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1). B8 indicates the magnetic flux density at 800A/m. Core loss and magnetic flux density are measured after stress relief annealing and speciemen is parallel to the rolling direction. (Annealing condition: 840°C, 1hr, non-oxidation atmosphere)

PH-Core Grain-oriented electrical steel

■ Dimension & Shape Tolerance

	Width, mm (in.)	Thickness, mm (in.)	Thickness Tolerance, mm (in.)	Thickness deviation in Width, mm (in.)	Width Tolerance, mm (in.)	Camber(Length: 2m), mm (in.)
		0.23 (0.0091)	±0.02 (0.0008)	0.02 (0.0008) & under		1.0 (0.0394) & under
900 (35. and ov	900 (35.43)	1 0.27 (0.0100)	0.00 (0.00 (0)		+0.6 (0.0236)	
	ana over	0.30 (0.0118)	±0.03 (0.0012)	0.03 (0.0012) & under		

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

■Typical Electrical and Magnetic Properties

Grade	Resistivity,		Magnetic Flux Density, T			
	×10 ⁻⁸	1.5T/50Hz	1.7T/50Hz	1.5T/60Hz	1.7T/60Hz	B8
23PH 085		0.62 (0.28)	0.83 (0.38)	0.81 (0.37)	1.09 (0.49)	1.91
23PH 090		0.64 (0.29)	0.88 (0.40)	0.84 (0.38)	1.14 (0.52)	1.91
23PH 095		0.65 (0.29)	0.90 (0.41)	0.86 (0.39)	1.17 (0.53)	1.91
27PH 095	48	0.70 (0.32)	0.93 (0.42)	0.92 (0.42)	1.22 (0.55)	1.91
27PH 100		0.71 (0.32)	0.96 (0.44)	0.93 (0.42)	1.26 (0.57)	1.90
30PH 100		0.74 (0.34)	0.99 (0.45)	0.98 (0.44)	1.29 (0.59)	1.91
30PH 105		0.76 (0.34)	1.01 (0.46)	1.00 (0.45)	1.33 (0.60)	1.90

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method. Specimen is parallel to the rolling direction and annealed for magnetic properties.

■Typical Mechanical Properties and Lamination Factor

Thickness,	Tensile Strength, N/mm²		Yield Point, N/mm²		Elongation, %		Hardness	Lamination
mm (in.)	L	C	L	C	L	C	HV1	Factor, %
0.23 (0.0091)	381	424	356	383	14	42	183	97.0
0.27 (0.0106)	361	415	337	367	14	42	182	97.5
0.30 (0.0118)	345	412	330	358	16	45	184	98.0

 $\textbf{Note)} \ \ \textbf{1.} \ \textbf{Above values are not guaranteed.} \ \ \textbf{Tests are conducted in accordance with JIS\ Z\ 2241\ and\ 2244.}$

- 2. L: Specimen is parallel to the rolling direction. / C: Specimen is transverse to the rolling direction.
- 3. Specimens with 0A coating are used for lamination factor test.

15

Grain-oriented

PHD-Core Grain-oriented electrical steel

PHD-Core

PHD-core has excellent magnetic properties by domain refining technologies which can achieve significant loss reduction.

■ Standard Size

Product	Grade	Thickness mm (in)	Width, r	nm (in.)	Inner diameter,	
Product	uraue	Thickness, mm (in.)	Available	Standard	mm (in.)	
	23PHD080					
	23PHD085	0.23 (0.0091)		1000 (39.37) 1200 (47.24)	508 (20)	
PHD-Core	23PHD090					
	27PHD085		900~1200			
Tilb-oole	27PHD090	0.27 (0.0106)	(35.43~47.24)			
	27PHD095					
	30PHD095	0.00 (0.0110)				
	30PHD100	0.30 (0.0118)				

Note) For non-standard sizes, please contact us.

■ Specification

Magnetic properties and lamination factor

Grade	Density,	Core Loss, Ma	x, W/kg (W/lb)	Magnetic Flux Density, Min, T	Lamination Factor,	
uraue	kg/dm³	1.7T/50Hz	1.7T/60Hz	B8	Min, %	
23PHD080		0.80 (0.36)	1.14 (0.52)		94.5	
23PHD085		0.85 (0.39)	1.17 (0.53)			
23PHD090		0.90 (0.41)	1.19 (0.54)	1.88		
27PHD085	7.05	0.85 (0.39)	1.17 (0.53)		95.0	
27PHD090	7.65	0.90 (0.41)	1.22 (0.55)			
27PHD095		0.95 (0.43)	1.26 (0.57)			
30PHD095		0.95 (0.43)	1.30 (0.59)		05.5	
30PHD100		1.00 (0.45)	1.36 (0.62)		95.5	

 $\textbf{Note)} \ \ \textbf{1.} \ \ \textbf{Above test is conducted in accordance with IEC60404-3 (or JIS C 2556), using single sheet tester, without stress relief annealing.}$

- 2. Domain refining effect of PHD core will be nullified by annealing.
- 3. B8 indicates the magnetic flux density at 800A/m.

■ Dimension & Shape Tolerance

	Width, Thickness, mm (in.) mm (in.)		Thickness Tolerance, mm (in.)	Thickness deviation in Width, mm (in.)	Width Tolerance, mm (in.)	Camber (Length:2m), mm (in.)	
	900 (35.43)	0.23 (0.0091)	±0.02 (0.0008)	0.02 (0.0008) and under			
		0.27 (0.0106)	. 0.02 (0.0012)	0.00 (0.0010) and under	+0.6 (0.0236)	1.0 (0.0394) and under	
and over	0.30 (0.0118)	±0.03 (0.0012)	0.03 (0.0012) and under		and under		

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

PHD-Core Grain-oriented electrical steel

■Typical Electrical and Magnetic Properties

Grade	Resistivity, Ω·m		Magnetic Flux Density, T			
	×10 ⁻⁸	1.5T/50Hz	1.7T/50Hz	1.5T/60Hz	1.7T/60Hz	B8
23PHD080		0.57 (0.26)	0.77 (0.35)	0.75 (0.34)	1.01 (0.46)	1.91
23PHD085		0.59 (0.27)	0.80 (0.36)	0.78 (0.35)	1.05 (0.48)	1.91
23PHD090		0.62 (0.28)	0.83 (0.38)	0.80 (0.36)	1.09 (0.49)	1.91
27PHD085	48	0.62(0.28)	0.81 (0.37)	0.83 (0.38)	1.06 (0.48)	1.91
27PHD090	10	0.64 (0.29)	0.84 (0.38)	0.86 (0.39)	1.10 (0.50)	1.91
27PHD095		0.66 (0.30)	0.88 (0.40)	0.86 (0.39)	1.18 (0.54)	1.91
30PHD095		0.68 (0.31)	0.93 (0.42)	0.91 (0.41)	1.23 (0.56)	1.91
30PHD100		0.70 (0.32)	0.95 (0.43)	0.93 (0.42)	1.26 (0.57)	1.91

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC60404-3 (or JIS C 2556) method, using as-sheared specimen which is parallel to the rolling direction, without stress relief annealing.

■Typical Mechanical Properties and Lamination Factor

Thickness,	Tensile Strength, N/mm²		Yield Point, N/mm²		Elongation, %		Hardness	Lamination
mm (in.)	L	C	L	C	L	C	HV1	Factor, %
0.23 (0.0091)	381	424	356	383	14	42	183	97.0
0.27 (0.0106)	361	415	337	367	14	42	182	97.5
0.30 (0.0118)	345	412	330	358	16	45	184	98.0

Note) 1. Above values are not guaranteed. Tests are conducted in accordance with JIS Z 2241 and 2244.

- 2. L: Specimen is parallel to the rolling direction. / C: Specimen is transverse to the rolling direction.
- 3. Specimens with 0A coating are used for lamination factor test.

■ Standard Size

Product	Grade	Thickness, mm (in.)	Width, r	Inner diameter,	
Product	uraue	Thickness, min (m.)	Available	Standard	mm (in.)
DUE Ones	23PHE080	0.23	900~1200	1000 (39.37)	508
PHE-Core	23PHE085	(0.0091)	(35.43~47.24)	1200 (47.24)	(20)

Note) For non-standard sizes, please contact us.

■ Specification Magnetic properties and lamination factor

PHE-Core Grain-oriented electrical steel

Grade	Density,	Core Loss, Ma	x, W/kg (W/lb)	Magnetic Flux Density, Min T	Lamination Factor,	
	kg/dm³	1.7T/50Hz	1.7T/60Hz	B8	Min, %	
23PHE080	7.05	0.80 (0.36)	1.14 (0.52)	1.07	04.5	
23PHE085	7.65	0.85 (0.39)	1.17 (0.53)	1.87	94.5	

Note) Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1). B8 indicates the magnetic flux density at 800A/m. Core loss and magnetic flux density are measured after stress relief annealing and speciemen is parallel to the rolling direction. (Annealing condition: 840°C, 1hr, non-oxidation atmosphere)

■ Dimension & Shape Tolerance

Width, Thickness, mm (in.) mm (in.)		Thickness Tolerance, mm (in.)	Thickness deviation in Width, mm (in.)	Width Tolerance, mm (in.)	Camber (Length:2m), mm (in.)	
900 (35.43) and over	0.23 (0.0091)	±0.02 (0.0008)	0.02 (0.0008) and under	+0.6 (0.0236)	1.0 (0.0394) and under	

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

■Typical Electrical and Magnetic Properties

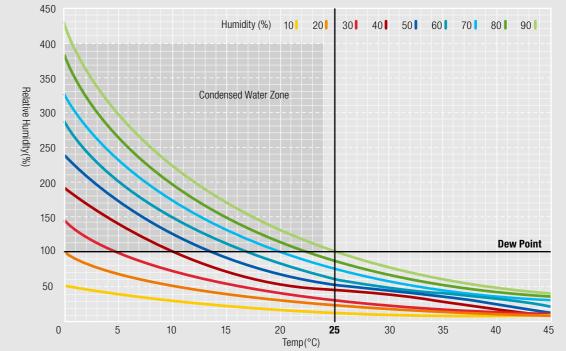
Grade	Resistivity, Ω·m		Core Loss, \	W/kg (W/lb)		Magnetic Flux Density, T
	×10 ⁻⁸	1.5T/50Hz	1.7T/50Hz	1.5T/60Hz	1.7T/60Hz	B8
23PHE080	40	0.57 (0.26)	0.77 (0.35)	0.75 (0.34)	1.00 (0.45)	1.89
23PHE085	48	0.60 (0.27)	0.81 (0.37)	0.78 (0.35)	1.05 (0.48)	1.89

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method. Specimen is parallel to the rolling direction and annealed for magnetic properties.

■Typical Mechanical Properties and Lamination Factor

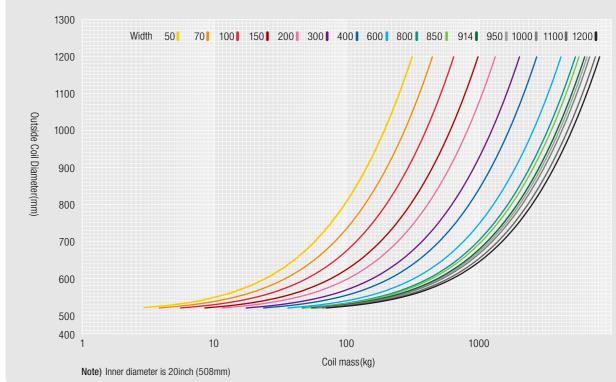
Thickness,	Tensile Stre	Tensile Strength, N/mm²		Yield Point, N/mm²		Elongation, %		Lamination
mm (in.)	L	C	L	C	L	C	HV1	Factor, %
0.23 (0.0091)	381	424	356	383	14	42	183	97.0
, ,								

Note) 1. Above values are not guaranteed. Tests are conducted in accordance with JIS Z 2241 and 2244.


2. L: Specimen is parallel to the rolling direction. / C: Specimen is transverse to the rolling direction.

3. Specimens with 0A coating are used for lamination factor test.

Surface condensation in relation to humidity and temperature


■ Reference for rust

Condensed Water on steel surface Graph according to Humidity and Temperature

Water is condensed on the steel surface in certain temperature and humidity in store place and steel is likely to get rusty. Ex) In a place of 25°C, humidity 80%, water is condensed when temp decrease to 22°C.

■ Relation among weight, outside diameter and width of coil

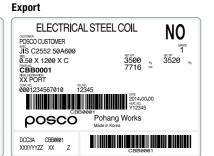
Major international standards

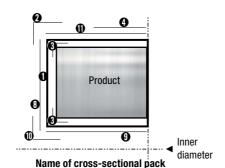
When ordering, please be sure to consult our latest and check the specifications or standards of products may change.

■ Grain-Oriented Electrical Steel

	POSCO	(2019)	JIS C 25	53 (2019)	ASTM A 8	376 (2017)	EN1010	7 (2014)
Thickness, mm (in.)	Grade	Core Loss, Max, W/kg (W/lb)	Grade	Core Loss, Max, W/kg (W/lb)	Grade	Core Loss, Max, W/kg (W/lb)	Grade	Core Loss, Max, W/kg (W/lb)
		1.7T/50Hz		1.7T/50Hz		1.7T/50Hz		1.7T/50Hz
	23PHD080	0.80 (0.36)	23R080	0.80 (0.36)	-	-	-	-
	23PHD085	0.85 (0.39)	23R085	0.85 (0.39)	-	-	M85-23P ^b	0.85 (0.39)
0.23 (0.0091)	23PHD090	0.90 (0.41)	23R090	0.90 (0.41)	23Q054	0.90 (0.41)	M90-23Pb	0.90 (0.41)
	23PH 085	0.85 (0.39)	23P085	0.85 (0.39)	-	-	-	-
	23PH 090	0.90 (0.41)	23P090	0.90 (0.41)	-	-	-	-
	23PH 095	0.95 (0.43)	23P095	0.95 (0.43)	-	-	M95-23P	0.90 (0.41)
	27PHD085	0.85 (0.39)	27R085	0.85 (0.39)	-	-	-	-
	27PHD095	0.95 (0.43)	27R095	0.95 (0.43)	27Q057	0.96 (0.43)	M95-27Pb	0.95 (0.43)
0.27 (0.0106)	27PH 095	0.95 (0.43)	27P095	0.95 (0.43)	-	-	-	-
	27PH100	1.00 (0.45)	27P100	1.00 (0.45)	27P066	1.11 (0.50)	M100-27P	1.00 (0.45)
	27PG130	1.30 (0.59)	27G130	1.30 (0.59)	-	-	M130-27S	1.30 (0.59)
	30PHD095	0.95 (0.43)	-	-	-	-	-	-
	30PHD100	1.00 (0.45)	-	-	-	-	-	-
0.30 (0.0118)	30PH 100	1.00 (0.45)	30P100	1.00 (0.45)	-	-	-	-
0.00 (0.0110)	30PH 105	1.05 (0.48)	30P105	1.05 (0.48)	-	-	M105-30P	1.05 (0.48)
	30PG 120	1.20 (0.54)	30G120	1.20 (0.54)	-	-	M120-30S	1.20 (0.54)
	30PG 130	1.30 (0.59)	30G130	1.30 (0.59)	30H083	1.39 (0.63)	M130-30S	1.30 (0.59)
0.05 (0.0400)	35PG145	1.45 (0.66)	35G145	1.45 (0.66)	-	-	M145-35S	1.45 (0.66)
0.35 (0.0138)	35PG155	1.55 (0.70)	35G155	1.55 (0.70)	35H094	1.57 (0.71)	M155-35S	1.55 (0.70)

Packaging & marking


NO	Name	Meterial
0	PP VCI WRAP	VINYL
2	OUTER RING	STEEL
•	CORNER WRAP	ANTI-RUST BOARD
4	OUTER PROTECT BOARD	STEEL
9	HORIZONTAL BAND	STEEL
6	CENTER BAND	PET
0	VERTICAL BAND	STEEL
8	SIDE BOARD	PLASTIC
9	INNER PROTECT BOARD	PLASTIC
•	INNER RING	STEEL
•	OUTER PROTECT BOARD	ANTI-RUST BOARD



* Packing Type and materials are changeable.

Domestic

GRAIN-ORIENTED

ELECTRICAL STEEL

Copyright © 2019 by POSCO All rights reserved

Contact Us

POSCO Headquarters
6261, Donghaean-ro, Nam-gu, Pohang-si,
Gyeongsangbuk-do 790-300, Korea
Global Quality & Service Management Office
TEL. 82-54-220-3111
FAX. 82-54-220-0799

Headquarters

6261, Donghaean-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 790-300, Korea

TEL 82-54-220-0114 FAX 82-54-220-6000

Seoul Office

POSCO Center, 440, Teheran-ro, Gangnam-gu, Seoul 135-777, Korea

TEL 82-2-3457-0114

FAX 82-2-3457-6000

Pohang Works

6261, Donghaean-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 790-785, Korea

TEL 82-54-220-0114

FAX 82-54-220-6000

Gwangyang Works

20-26, Pokposarang-gil, Gwangyang-si, Jeollanam-do 545-711, Korea

TEL 82-61-790-0114

FAX 82-61-790-7000

